Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PeerJ ; 11: e14953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874969

RESUMO

Background: By changing the circumstances in which animals make their behavioral decisions, weekly cycles of human activity might cause changes in wildlife behavior. For example, when there is more human activity in a location, animals may become more vigilant, which can decrease the time they spend foraging, or roam farther from home, leading to increased home range size. Overall, there has been little exploration of how animal species living in locations that have undergone land use change are affected by the temporal dynamics of human activity levels. In this study, we aimed to analyze the effect of the weekend on agricultural activities and hummingbird territorial activity. We examined differences between weekdays and weekends in factors previously shown to follow weekly cyclical patterns, such as pedestrian presence, traffic, and the presence of domestic animals. We hypothesized that territorial hummingbirds would respond to these weekly cycles of human activity by altering their behavior. Methods: We studied Broad-tailed hummingbird territories in forested areas that had been transformed to agriculture lands in central Mexico. We evaluated whether territorial individuals changed their behaviors (i.e., chases of intruders, foraging within their territory, number of intruders allowed to forage in the territory) in response to variation between weekdays and weekends in the number of pedestrians, cyclists, dogs, farm animals and vehicles. Results: We found that the level of agriculture-related human activities showed a weekly cycle at our study site. On weekdays there was higher traffic of pedestrians, cyclists, dogs, farm animals and vehicles, compared to the weekends. Hummingbirds responded to these weekday-weekends differences by changing their territorial behavior. Compared to weekends, on weekdays hummingbirds showed a decrease in defense (number of chases) as well as the use of their territory (number of flowers visited), which allowed increased access to intruders (number of visited flowers by intruders). Conclusions: Our findings suggest that variation in agriculture-related human activities between weekdays and weekends can alter the territorial behavior of hummingbirds. Behavioral shifts seem to be related to these human activity cycles, leading hummingbirds to reduce chases and feeding during weekdays when human activity is highest, but increasing both behaviors during times of minimal disturbance.


Assuntos
Ciclos de Atividade , Comportamento Animal , Aves , Animais , Humanos , Agricultura , Florestas , Atividades Humanas
2.
PeerJ ; 10: e13331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35469196

RESUMO

A dominance hierarchy is the set of ranks occupied by species within an assemblage. Species with a high position within the dominance hierarchy tend to dominate subordinate species in contests for access to resources. In hummingbirds, greater weight and wing disc loading have been associated with highest ranks within the dominance hierarchy. Nevertheless, the limit to which the difference between the weight of contending species represents a competitive advantage has not yet been determined. Here, we determined the dominance hierarchy of a hummingbird assemblage exploiting the most abundant floral resource (Palicourea padifolia, Rubiaceae) in a cloud forest of central Veracruz, Mexico. Specifically, we tested whether species weight and wing disc loading influence the dominance hierarchy. Additionally, we tested whether the flowers visited per foraging bout increases with species weight and dominance. We further tested whether weight, wing disc loading, and the genetic relatedness between contenders influenced the dominance relationships in species-pair interactions. Our results indicate that the hierarchy is positively influenced by weight. Hummingbirds visited similar number of flowers regardless their weight or their dominance. Nevertheless, the probability that the heaviest contender won contests was positively associated with the differences of weight and genetic relatedness between contenders. Contrarily, the probability that the contender with greatest wing disc loading won contests was positively associated with differences of weight and negatively associated with the relatedness between contenders. However, these models only explained between 22% and 34% of the variation, respectively. Our results demonstrate that the weight was the major contributor to high dominance values. However, future studies should include (1) the temporal variability of the weight and (2) experimental predictor variables such the burst power of the hummingbirds to evaluate its effects on the dynamics of dominance hierarchies in hummingbird assemblages. All the hummingbird species present in the studied assemblage have developed wide behavioral mechanisms that compensate their morphological differences, which allow them to coexist, even when they compete for the access to the same resource.


Assuntos
Comportamento Alimentar , Flores , Animais , Aves/genética , Predomínio Social , Florestas
3.
Curr Zool ; 65(3): 261-268, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31263484

RESUMO

Intra and interspecific competition for nectar play an important role in hummingbird communities. Larger sized species usually exclude smaller species from the rich floral resources. However, it has been recently postulated that the competitive advantages of a large body size decline as the evolutionary distance between the contending species increases. In this study, we analyzed dominance hierarchy dynamics in a hummingbird assemblage in central Mexico. By monitoring hummingbird territories established in three plant species through 1 year, we assessed the effects of energy within territories and the territory owners identity in the frequency of inter and intraspecific encounters. We also evaluated if these factors affect the dominance of larger species when they compete against smaller distantly related contenders. Our results show that their frequency of intraspecific encounters was related with the identity of the territory's owner. On the contrary, the frequency of interspecific encounters was related with both the territory and the identity of the territory's owner. We did not find a significant difference between the number of encounters dominated by larger and smaller species and their contenders. However, the increase in genetic distance between contenders was positively associated with a higher frequency of encounters dominated by small hummingbirds. Our results showed that the ecological factors and evolutionary relationships among contenders play important roles in the dominance hierarchy dynamics.

4.
PLoS One ; 12(4): e0175905, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426818

RESUMO

Historic demography changes of plant species adapted to New World arid environments could be consistent with either the Glacial Refugium Hypothesis (GRH), which posits that populations contracted to refuges during the cold-dry glacial and expanded in warm-humid interglacial periods, or with the Interglacial Refugium Hypothesis (IRH), which suggests that populations contracted during interglacials and expanded in glacial times. These contrasting hypotheses are developed in the present study for the giant columnar cactus Cephalocereus columna-trajani in the intertropical Mexican drylands where the effects of Late Quaternary climatic changes on phylogeography of cacti remain largely unknown. In order to determine if the historic demography and phylogeographic structure of the species are consistent with either hypothesis, sequences of the chloroplast regions psbA-trnH and trnT-trnL from 110 individuals from 10 populations comprising the full distribution range of this species were analysed. Standard estimators of genetic diversity and structure were calculated. The historic demography was analysed using a Bayesian approach and the palaeodistribution was derived from ecological niche modelling to determine if, in the arid environments of south-central Mexico, glacial-interglacial cycles drove the genetic divergence and diversification of this species. Results reveal low but statistically significant population differentiation (FST = 0.124, P < 0.001), although very clear geographic clusters are not formed. Genetic diversity, haplotype network and Approximate Bayesian Computation (ABC) demographic analyses suggest a population expansion estimated to have taken place in the Last Interglacial (123.04 kya, 95% CI 115.3-130.03). The species palaeodistribution is consistent with the ABC analyses and indicates that the potential area of palaedistribution and climatic suitability were larger during the Last Interglacial and Holocene than in the Last Glacial Maximum. Overall, these results suggest that C. columna-trajani experienced an expansion following the warm conditions of interglacials, in accordance with the GRH.


Assuntos
Cactaceae/classificação , Ecossistema , Cactaceae/genética , Cactaceae/fisiologia , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Genes de Plantas , Haplótipos , México , Modelos Teóricos , Fotossíntese , Clima Tropical
5.
PeerJ ; 4: e2588, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27781172

RESUMO

BACKGROUND: Territory owners usually defeat intruders. One explanation for this observation is the uncorrelated asymmetry hypothesis which argues that contests might be settled by an arbitrary convention such as "owners win." We studied the effect of territorial residency on contest asymmetries in the white-eared hummingbird (Hylocharis leucotis) in a fir forest from central Mexico. METHODS: Twenty white-eared male adult hummingbird territories were monitored during a winter season, recording the territorial behavior of the resident against intruding hummingbirds. The size and quality of the territory were related to the probability that the resident would allow the use of flowers by the intruder. Various generalized models (logistical models) were generated to describe the probabilities of victory for each individual resident depending on the different combinations of three predictor variables (territory size, territory quality, and intruder identity). RESULTS: In general, small and low quality territory owners tend to prevent conspecific intruders from foraging at a higher rate, while they frequently fail to exclude heterospecific intruders such as the magnificent hummingbird (Eugenes fulgens) or the green violetear hummingbird (Colibri thalassinus) on any territory size. Our results showed that the identity of the intruder and the size and quality of the territory determined the result of the contests, but not the intensity of defense. DISCUSSION: Initially, the rule that "the resident always wins" was supported, since no resident was expelled from its territory during the study. Nevertheless, the resident-intruder asymmetries during the course of a day depended on different factors, such as the size and quality of the territory and, mainly, the identity of the intruders. Our results showed that flexibility observed in contest tactics suggests that these tactics are not fixed but are socially plastic instead and they can be adjusted to specific circumstances.

6.
Environ Entomol ; 45(2): 292-300, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26655094

RESUMO

Vegetation structure and floristics have a strong influence on the relative abundance of spider guilds and functional diversity of terrestrial arthropods. Human activities have transformed much of the temperate woodlands. The aim of this study was to test five predictions related to the guild distribution and functional diversity of the ground spider communities of Eucalyptus plantations and native pine woodlands in western Mexico. Spiders were collected every fortnight from September to November from 15 pitfalls positioned in each of the eight sites. We also assessed the cover of grasses, herbs, shrubs, and leaf litter in each site. We found that the abundances of ground hunters and sheet weavers between plantations and pine woodlands were different. Nevertheless, there was not a consistent difference between sites of each of the vegetation types. Most species of ground hunters, sheet web weavers, and many other hunters were associated with litter and the grass cover. Nonetheless, in some cases, species of different families belonging to the same guild responded to different variables. Wolf spiders were related to the grass Aristida stricta Micheaux, 1803, while the species of the other families of ground hunters were associated with leaf litter. One Eucalyptus plantation and one pine woodland had the highest functional diversity of all sites. These sites have a well developed litter and grass cover. Our study suggests that the abundance of litter and a high cover of grasses explain the occurrence of species with different traits, and these habitat components results in a high functional diversity.


Assuntos
Biodiversidade , Florestas , Aranhas/fisiologia , Animais , Eucalyptus/crescimento & desenvolvimento , Espécies Introduzidas , México , Pinus/crescimento & desenvolvimento
7.
Environ Entomol ; 43(4): 889-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25003959

RESUMO

The positive relationship between productivity and species diversity is well-known. Insect communities associated with the flowers of Cactaceae species represent an interesting system to explore the productivity-diversity relationship because branches facing the equator receive more photosynthetically active radiation and have higher productivity. Thus, flowers with contrasting orientations within an individual, and even within a single branch, might differ in productivity. Therefore, higher abundance, species richness, and diversity are expected for the insect communities associated with south-facing flowers. This hypothesis was tested in Pachycereus weberi (J.M. Coulter) Backeberg (Cactaceae). Insects within flowers with contrasting orientations were collected and its abundance, richness, and diversity were estimated. We also asked if insects prefer big flowers. Thus, flower volume was estimated and regression analyses were conducted to test if there is a positive relationship between flower size and insect abundance. Flower orientation did not affect species richness. However, species abundance and diversity were different in flowers with contrasting orientations. In general, species abundance was higher in flowers facing southwards than in north-facing flowers. On the contrary, species diversity was higher in north-facing flowers. Abundance of Coleoptera was explained by flower volume in south-facing flowers. Contrary to our hypothesis, total diversity was greater in the less productive oriented flowers. Three possible explanations are discussed to explain the low diversity found in the highly productive, south-facing flowers. Our study provides evidence for the effects of productivity on the structure of insect communities at a very small-scale.


Assuntos
Biota , Cactaceae/crescimento & desenvolvimento , Cadeia Alimentar , Insetos/fisiologia , Animais , Flores/crescimento & desenvolvimento , México
8.
Environ Entomol ; 39(2): 320-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20388259

RESUMO

Peucetia viridans (Hentz) lives almost exclusively on Croton ciliatoglandulifer (Ortega) in the dry forests of western Mexico. This spider is usually found on pubescent shrubs. Within their host plants, P. viridans has been associated with plant height and cover, as well as with number of flowers or inflorescences in anthesis. Flowers can be used as cues of good habitat conditions or because they attract prey detected by the spider. In this study, we assessed the importance of flowers, plant cover, and plant exposure (sun/shade) on the spider distribution in five 50-plant transects. In a field experiment, we also compared the number of spiders between controls, plants from which inflorescences were removed, and plants with artificial inflorescences. The results from the transects indicate that, when the number of flowers per spider is high, spiders were more abundant in exposed locations, which presumably offer better microclimatic conditions; when flowers become scarce, food may be more difficult to find and the spider distribution become strongly associated with the number of flowers, where they are more likely to find prey. Spider abundances on the experimental plot decreased on plants from which flowers were removed in comparison to control plants. Spider abundance increased on those in which artificial inflorescences were added. The similarity between plants with natural and artificial inflorescences suggests that spiders use flowers as cues of good microhabitats instead of prey visitors, which are significantly less abundant on artificial inflorescences.


Assuntos
Croton , Aranhas , Animais , Ecossistema , Flores , México
9.
Evolution ; 58(8): 1685-95, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15446423

RESUMO

In this study we present a simple optimization model for the evolution of defensive strategies (tolerance and resistance) of plants against their natural enemies. The model specifically evaluates the consequences of introducing variable costs and benefits of tolerance and resistance and nonlinear cost-and-benefit functions for tolerance and resistance. Incorporating these assumptions, the present model of plant defense predicts different evolutionary scenarios, not expected by previous work. Basically, the presence of an adaptive peak corresponding to intermediate levels of allocation to tolerance and resistance can arise when the shape parameter of the cost function is higher than the corresponding of the benefit function. The presence of two alternatives peaks of maximum tolerance and maximum resistance occurs only when benefits of tolerance and resistance interact less than additive. Finally, the presence of one peak of maximum resistance or maximum tolerance depends on the relative values of the magnitude of costs for tolerance and resistance. An important outcome of our model is that under a plausible set of conditions, variable costs of tolerance and resistance can represent an important aspect involved in the maintenance of intermediate levels of tolerance and resistance, and in favoring adaptive divergence in plant defensive strategies among populations. The model offers a framework for future theoretical and empirical work toward understanding spatial variation in levels of allocation to different defensive strategies.


Assuntos
Adaptação Biológica , Evolução Biológica , Ecossistema , Modelos Biológicos , Fenômenos Fisiológicos Vegetais
10.
Evolution ; 58(8): 1696-704, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15446424

RESUMO

In this study we examine the hypothesis that divergent natural selection produces genetic differentiation among populations in plant defensive strategies (tolerance and resistance) generating adaptive variation in defensive traits against herbivory. Controlled genetic material (paternal half-sib families) from two populations of the annual Datura stramonium genetically differentiated in tolerance and resistance to herbivory were used. This set of paternal half-sib families was planted at both sites of origin and the pattern of genotypic selection acting on tolerance and resistance was determined, as well as the presence and variation in the magnitude of allocational costs of tolerance. Selection analyses support the adaptive differentiation hypothesis. Tolerance was favored at the site with higher average level of tolerance, and resistance was favored at the site with higher average level of resistance. The presence of significant environmentally dependent costs of tolerance was in agreement with site variation in the adaptive value of tolerance. Our results support the expectation that environmentally dependent costs of plant defensive strategies can generate differences among populations in the evolutionary trajectory of defensive traits and promote the existence of a selection mosaic. The pattern of contrasting selection on tolerance suggests that, in some populations of D. stramonium, tolerance may alter the strength of reciprocal coevolution between plant resistance and natural enemies.


Assuntos
Adaptação Biológica , Datura stramonium/fisiologia , Ecossistema , Variação Genética , Modelos Genéticos , Seleção Genética , Animais , Datura stramonium/genética , Cadeia Alimentar , Insetos/fisiologia , México
11.
Oecologia ; 92(1): 83-89, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28311816

RESUMO

The creosote bush (Larrea tridentata) is a common desert perennial with bifoliate, amphistomatic, divaricate leaves. The leaves can vertically close their folioles and vary their profile with respect to direct solar radiation. Field data from different Mexican deserts showed a significant correlation between foliole aperture and mean foliole inclination: in plants in which folioles were more open, the foliole surfaces were less vertical. In a series of field experiments in the Chihuahuan Desert, foliole aperture varied significantly with the water-status of the plant and the hour of the day. In moist plants, folioles opened in the early morning and closed in the afternoon. Water-stressed plants showed significantly lower foliole apertures. A simulation of the light interception patterns of the plants showed that foliole closure in water-stressed individuals reduces direct radiation interception by around 24%. Most (64%) of the reduction in interception was due to the vertical inclination of the photosynthetic surfaces induced by foliole closure in the water-stressed plants. The rest (36%) of the reduction in interception was due to differential self-shading between foliole pairs, which was higher in the closed folioles of the water-stressed plants, but operated more towards the early hours of the day.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...